Probabilistic Analysis of Simpson′s Quadrature
نویسندگان
چکیده
منابع مشابه
Differential Quadrature Method for the Analysis of Hydrodynamic Thrust Bearings
This paper presents the application of the method of generalized differential quadrature (GDQ) for the analysis of hydrodynamic thrust bearings. GDQ is a simple, efficient, high-order numerical technique and it uses the information on all grid points to approach the derivatives of the unknown function. The effectiveness of the solution technique is verified by comparing the GDQ computed results...
متن کاملFrank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees
There is renewed interest in formulating integration as a statistical inference problem, motivated by obtaining a full distribution over numerical error that can be propagated through subsequent computation. Current methods, such as Bayesian Quadrature, demonstrate impressive empirical performance but lack theoretical analysis. An important challenge is therefore to reconcile these probabilisti...
متن کاملProbabilistic analysis of the asymmetric digital search trees
In this paper, by applying three functional operators the previous results on the (Poisson) variance of the external profile in digital search trees will be improved. We study the profile built over $n$ binary strings generated by a memoryless source with unequal probabilities of symbols and use a combinatorial approach for studying the Poissonized variance, since the probability distribution o...
متن کاملProbabilistic Inference with Stochastic Discrete Clenshaw-Curtis Quadrature
The partition function is fundamental for probabilistic graphical models—it is required for inference, parameter estimation, and model selection. Evaluating this function corresponds to discrete integration, namely a weighted sum over an exponentially large set. This task quickly becomes intractable as the dimensionality of the problem increases. We propose an approximation scheme that, for any...
متن کاملSampling for Inference in Probabilistic Models with Fast Bayesian Quadrature
We propose a novel sampling framework for inference in probabilistic models: an active learning approach that converges more quickly (in wall-clock time) than Markov chain Monte Carlo (MCMC) benchmarks. The central challenge in probabilistic inference is numerical integration, to average over ensembles of models or unknown (hyper-)parameters (for example to compute the marginal likelihood or a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 1994
ISSN: 0885-064X
DOI: 10.1006/jcom.1994.1020